How Stax Leverages Data & Analytics to Identify Growth Opportunities for Multi-Location Businesses

How Stax Leverages Data & Analytics to Identify Growth Opportunities for Multi-Location Businesses

Iranga Mendis • June 7, 2024
Iranga Mendis • June 7, 2024

Share

As private equity (PE) funds evaluate a potential acquisition during Commercial Due Diligence (CDD), they also evaluate and determine the growth potential for the target firm. To do this, they need to understand the firm’s competitive position. For firms with multiple locations (e.g., a chain of dental clinics or a manufacturer with several distributors), the PE fund needs to understand how the firm’s locations are positioned against its competitor’s locations. To achieve this, PE funds engage with consulting firms specializing in location data analysis.

Why Competitive Data is Important

Funds neglecting this data risk making investment mistakes and misjudging the level of existing competitive pressure. They may overestimate the attractiveness of acquisition targets and misunderstand the firm’s customer base.

Conversely, funds that obtain better data on competitors can more effectively prioritize new geographies and identify potential acquisition targets. They can analyze the data to uncover whitespace opportunities and discern differences across customer demographics, preferences, and purchasing patterns among competitors.


This approach ensures a thorough evaluation of the market landscape, enabling funds to make well-informed decisions that align with their portfolio companies’ growth objectives. However, there are many steps to gathering the data necessary to evaluate a firm’s competitive position.

Image of Iranga Mendis
Image of Iranga Mendis

Iranga Mendis

Manager

Image of Iranga Mendis

Iranga Mendis

Manager

As private equity (PE) funds evaluate a potential acquisition during Commercial Due Diligence (CDD), they also evaluate and determine the growth potential for the target firm. To do this, they need to understand the firm’s competitive position. For firms with multiple locations (e.g., a chain of dental clinics or a manufacturer with several distributors), the PE fund needs to understand how the firm’s locations are positioned against its competitor’s locations. To achieve this, PE funds engage with consulting firms specializing in location data analysis. 

Why Competitive Data is Important

Funds neglecting this data risk making investment mistakes and misjudging the level of existing competitive pressure. They may overestimate the attractiveness of acquisition targets and misunderstand the firm’s customer base. 


Conversely, funds that obtain better data on competitors can more effectively prioritize new geographies and identify potential acquisition targets. They can analyze the data to uncover whitespace opportunities and discern differences across customer demographics, preferences, and purchasing patterns among competitors. 

Primary research helps get this information—but not all of it. Stax recommends both. 


This approach ensures a thorough evaluation of the market landscape, enabling funds to make well-informed decisions that align with their portfolio companies’ growth objectives. However, there are many steps to gathering the data necessary to evaluate a firm’s competitive position. 

How Stax leverages data analytics to identify growth opportunities

1. Data Generation: One Data Source isn’t Enough

1. Data Generation: One Data Source isn't Enough

The first step in understanding the competitive position for multilocation businesses is getting reliable data on the firm's competitors. However, competitor data is not often available from a single source— some PE funds gather data by focusing on a few key competitor websites. Other times they estimate the number of locations per competitor from an aggregated list like Dun and Bradstreet or ZoomInfo. 


While this can be a good start, these approaches have gaps: They can be incomplete (focusing on only some competitor websites), out of date, irrelevant (too broad for the niche industry being targeted), or unavailable at a granular level (and only aggregated by state or metropolitan statistical area). In an ideal world, PE firms would have a full list of relevant competitors with their specific locations. 

Multiple sources are required as well, and these sources require extraction, consolidation, and validation. Data is even more difficult to collect when additional information about each location is needed, such as size, capacity, availability of specific products and services, etc. For example, in one of Stax’s engagements involving the acquisition of a dental chain, the client needed to measure capacity across specific specialties and hygienists. This is traditionally not available off-the-shelf. 


To accurately estimate the local competitive supply, again, multiple sources are required. There are six common types of databases that are compiled into a final list of competitors: 


  • Search engines such as Google or Yelp, which contain location data and tags about those locations 
  • Industry-led websites that list providers of a service (for example, Zocdoc gives lists of doctors) 
  • Third-party websites that list providers of a service (e.g., lists of wineries for wine enthusiasts, or lists of Indian grocery stores from an Indian immigration website) 
  • Websites with licensing, often differing by state 
  • Professional associations 
  • Pre-assembled lists available for purchase by third parties. 

2. Gathering the Data 

After identifying the sources, the data needs to be gathered from their source(s). In the best cases, this can be done easily through an API provided by the owners of the data. For others, the data can be “scraped” through analytical tools (e.g., Python packages). In cases where the data is available, a data analytics team can build a tool to collect this information. This technique is often used to help categorize competitors based on what they do. 


For example, with a list of competitor websites, a data scientist can build a tool to check each website for the presence of specific keywords that can identify specific services (e.g., “HVAC repair” or “HVAC maintenance”). This approach helps fill in gaps that are often unavailable from the broader sources.

3. Combining Multiple Sources (Challenges and Approaches) 

After gathering the data, it needs to be combined into a single usable dataset, which is the most time-consuming process for the data analytics team. Some common challenges are:   


  • Matching (e.g., names and addresses of competitors are listed differently in different datasets, requiring some kind of logic to determine if two locations from different datasets are the same location) 
  • Inconsistent availability of information for matching (e.g., one source may list a business and its address, the other may list a business and its website) 
  • Different ways of defining a “unit” of competition (e.g., for doctor’s offices, some sources are lists of doctors, other sources are lists of doctor’s offices) 
  • Lack of key data required for later data analysis (e.g., three of four sources may contain data on the revenue associated with each location, and an assumption is needed to interpolate revenue for locations exclusive to the fourth source).


Data analytics teams have tools for this kind of cleanup. Referred to as “soft matching” techniques, these are a common example of predictive models that measure the likelihood that two locations are the same location (based on what is known about each of them).

 

Utilizing these tools requires some experience and judgment. In some circumstances, a 90% likely match is acceptable—in others, the accuracy may differ based on “false positive” matches vs. “false negative” matches. In the worst-case scenario, if accuracy is needed for every location, the uncertain matches can be checked manually. 

4. Completing the analysis 

Once the data is prepared, the analysis is often straightforward. To identify growth opportunities, Stax, as an example, uses standard analytical methods to identify mismatches between local supply and local demand. The key inputs for those analyses are the lists of current companies providing the service (the supply) and the total demand (usually equivalent to the total addressable market calculated in most CDD engagements we do). Once we understand who the market participants are, distributing this demand across the country is usually trivial with geospatial tools (e.g., Alteryx).

5. First steps to value creation 

Customized lists of competitors are useful beyond the period of commercial due diligence. They are often the first step in a value creation engagement, since they help identify markets that the firm should enter organically; otherwise, they show opportunities for inorganic growth (acquisitions of competitors located in favorable or complementary geographies). 


We’ve found that, in diligence, we build a highly accurate dataset for only a few U.S. states or metropolitan statistical areas where detailed data is needed, before supplementing this with a broad estimate of the national opportunity. Post-close, we help expand that process to additional geographies that are more relevant for later value creation. 

Conclusion

Deal teams now request more precise competitor data from us, aiming to quantify growth prospects with greater accuracy. This, for us, facilitates a deeper understanding of how target companies are positioned against competitors and helps capture the nuances of each local market. With this kind of data, we have successfully guided clients through diverse opportunities in sectors such as fire and life safety, coffee, dental and other outpatient healthcare, glass and window, HVAC, entertainment, catering services, and more. 


If you’re considering a multilocation business, and you’ve already got a growth strategy based on location expansion, we recommend collecting this data during CDD to accurately assess the opportunity. This data can then serve as a foundation for value creation—and no other firm does value creation like Stax. We look forward to partnering with teams who recognize the significant value this can bring to the investment decision-making process. To learn more about our expertise, visit www.stax.com or click here to contact us directly.

Read More

Phil Dunne Featured on The Consulting Report's Podcast: Top Consultant
By Phil Dunne October 23, 2025
Stax Managing Director Phil Dunne recently joined the Top Consultant podcast hosted by The Consulting Report, to discuss his career and Grant Thornton Stax. Listen to the show here.
Grant Thornton Stax Supports TrustArc Acquisition by Main Capital Partners​
October 22, 2025
Grant Thornton Stax recently supported TrustArc, a leading provider of privacy compliance and data protection solutions, on its acquisition by Main Capital Partners. Read more here.
Six Cybersecurity Themes Private Equity Investors Should Know Leaving 2025
By Marissa Licursi, Tyler Michaels, & Yiwei Jiang October 20, 2025
Grant Thornton Stax has compiled this report outlining several key investment themes, based on our prior work with cybersecurity assets throughout 2025 to date. Read more here.
Robert Lytle & Phil Dunne Named Top 25 PE Consultants & Leaders of 2025
By Robert Lytle & Phil Dunne October 20, 2025
Robert Lytle and Phil Dunne were named amongst The Top 25 Private Equity Consultants and Leaders of 2025. Click here to read more about the list and The Consulting Report.
Grant Thornton Stax Advises Accel-KKR on Investment in Phocas Software​
October 20, 2025
Grant Thornton Stax congratulates Accel-KKR on its recent strategic growth investment in Phocas Software, a leading BI and FP&A platform for the middle-market. Click here to read more.
Featured by TechTarget—Embedding ESG into IT strategy: Insights for IT leaders
October 15, 2025
Anuj A. Shah was interviewed by TechTarget to explain how IT leaders can make ESG measurable and meaningful, as well as the benefits of aligning sustainability with business outcomes.
Show More